Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Jun Zang,* Ming-Lin Guo, Bo-Wen Cheng and Yuan-Lin Ren

College of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

Correspondence e-mail: zhjchem@eyou.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in solvent or counterion
R factor $=0.043$
$w R$ factor $=0.128$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(3-Nitrophenyl)-1-oxo-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-4-carboxamide dimethylformamide solvate

In the crystal structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}$, the carboxamide molecule and the solvent molecule of crystallization each possess mirror symmetry; for the former, the mirror plane bisects the two-ring $\mathrm{OP}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{C}$ cage. The packing is stabilized by an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Caged bicyclic phosphates are widely used as flame retardants, resin stabilizers and oil adducts. They have created great interest and many studies on these compounds have been reported (Allen et al., 1995; Li et al., 2002). We report here the structure of a new bicyclic phosphate cage compound, namely (3-nitro-phenyl)-1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]-octane-4-carboxamide, that crystallizes as the dimethylformamide solvate, (I).

(I)

The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. The terminal $\mathrm{P}=\mathrm{O}$ bond length is 1.446 (2) \AA and the average bridging $\mathrm{P}-\mathrm{O}$ distance is 1.562 (1) \AA. The majority of the bond distances and angles are, within experimental error, similar to those in other trialkyl phosphates (Nimrod et al., 1968; Liu et al., 1992). The O-P-O bond angles, which range from ca 104 to 115°, are different from the unstrained angles (ca 104 and 120°, respectively) in dibenzyl hydrogen phosphate, which can be assumed to be representative of strainless angles of this type (Dunitz \& Rollett, 1956). Some strain is also present in the $\mathrm{P}-\mathrm{O}-\mathrm{C}$ angles [average value $115.4(1)^{\circ}$]. The configuration around phosphorus is therefore distorted tetrahedral.

In the crystal structure (Fig. 2), the nitro group N2/O6/O7 and dimethylformamide molecule are coplanar with the arene ring. Atom O 8 of the dimethylformamide molecule is involved in an intermolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 8$ hydrogen bond (Fig. 2 and Table 2). The molecules stack in columns parallel to the b axis direction and are linked by a series of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

A dry three-necked round-bottom flask was charged with 3nitrophenylamine (2 mmol), 1-oxa-1-phosphatrioxabicyclo[2,2,2]-

Figure 1
A view of the molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The intermolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 8$ hydrogen bond is indicated by a dashed line. [Symmetry code: (A) $x, \frac{1}{2}-y, z$.]
octane-4-chlorocarbinyl (2 mmol) and acetone (20 ml). The mixture was stirred and triethylamine (2.2 mmol), dissolved in acetone, was added dropwise over a period of 0.5 h . The reaction mixture was stirred for 0.5 h at room temperature and then refluxed for another 2 h . The product obtained was filtered off, washed thoroughly with water, and recrystallized from dimethylformamide and water (1:4 $v / v)$. Single crystals were obtained by slow evaporation of a solution in dimethylformamide and water ($1: 4 \mathrm{v} / v$).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=387.28$
Monoclinic, $P 2_{1} / m$
$a=11.052$ (2) A
$b=6.7210(15) \AA$
$c=13.204$ (3) \AA
$\beta=114.344$ (3) ${ }^{\circ}$
$V=893.6$ (3) \AA^{3}
$Z=2$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.951, T_{\text {max }}=0.962$
5100 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.128$
$S=1.01$
2006 reflections
157 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.439 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1715 reflections
$\theta=3.1-25.0^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, yellow
$0.26 \times 0.22 \times 0.20 \mathrm{~mm}$

2006 independent reflections
1335 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-12 \rightarrow 13$
$k=-6 \rightarrow 8$
$l=-16 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0619 P)^{2}\right. \\
& +0.2629 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.061 \text { (6) }
\end{aligned}
$$

Figure 2
The crystal packing of compound (I), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions as dashed lines. H atoms have been omitted.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{P} 1-\mathrm{O} 1$	$1.446(2)$	$\mathrm{P} 1-\mathrm{O} 3$	$1.5646(18)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.557(2)$		
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	$114.63(14)$	$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 3^{\mathrm{i}}$	$103.45(15)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	$114.62(8)$	$\mathrm{C} 3-\mathrm{O} 2-\mathrm{P} 1$	$115.21(17)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	$104.07(9)$	$\mathrm{C} 1-\mathrm{O} 3-\mathrm{P} 1$	$115.58(13)$

Symmetry code: (i) $x,-y+\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 8$	$0.90(3)$	$1.95(3)$	$2.847(3)$	$175(3)$
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.97	2.40	$3.311(3)$	157
$\mathrm{C} 1-\mathrm{H} 1 D \cdots \mathrm{O} 8$	0.97	2.57	$3.439(3)$	149
$\mathrm{C} 1-\mathrm{H} 1 D \cdots \mathrm{O} 7^{\text {iii }}$	0.97	2.57	$3.222(3)$	125
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 5$	0.93	2.25	$2.851(3)$	122
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\text {iv }}$	0.93	2.54	$3.194(4)$	128
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 8$	0.93	2.56	$3.309(4)$	138
Symmetry codes:	(ii)	$-x+1, y+\frac{1}{2},-z+2 ;$	(iii)	$-x+2, y+\frac{1}{2},-z+2 ;$
$x+1, y, z+1$.				(iv)

The H atom bonded to the atom N 1 was located in a difference Fourier map and refined isotropically. The H atoms bonded to C atoms were positioned geometrically and included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aromatic }}, \mathrm{C}_{\text {methylene }}\right)$. The H atoms of the solvent methyl groups are disordered over two positions, each of occupancy 0.5 .

organic papers

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Allen, D. W., Anderton, E. C., Bradley, C. \& Shiel, L. E. (1995). Polym. Degrad. Stab. 47, 67-72.

Bruker (1997). SMART (Version 5.051) and SAINT (Version 5. A06). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Dunitz, J. D. \& Rollett, J. S. (1956). Acta Cryst. 9, 327-332.
Li, X., Ou, Y.-X. \& Shi, Y.-S. (2002). Polym. Degrad. Stab. 77, 383-390.
Liu, X.-L., Sun, M., Miao, F.-M., Li, Y.-G. \& Wang, J.-J. (1992). Acta Phys.Chim. Sin. 8, 100-108.
Nimrod, D. M., Fitzwater, D. R. \& Verkade, J. G. (1968). J. Am. Chem. Soc. 90, 2780-2784.
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.

